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AbslmcL A model of two-dimensional vesicles on a Sierpinski gasket is introduced and 
mlved by iterative methods. The effect of osmotic pressure is obtained by associating 
a fugacity IO each plaquetie or the underlying vianguiar lattice enclosed by the vesicle. 
Several results mncerning lhe ailical behaviour and phase diagram are discussed. In 
particular it is shown aaclly lhal deflated aitical vesicles fall into the universality dass 
of branched polymers. 

1. Introduction 

The physics of biological membranes, which can consist of lipid bilayers assuming 
the shape of closed vesicles [l, 21, motivates theoretical interest in two-dimensional 
models of these objects, both in the continuum and on the lattice [3, 41. The goal 
in this case consists in understanding the scaling properties and the different shapes 
"L &b,CY."CL.'U.l ""&-"r.C ""JCCLJ, w,,,L.,, ,,uL.Lua.LG urGllrra.r,y ",,UGC L l l G  " I I I U G l l ~  "I 

fugacities controlling, for example, the length and enclosed area. More complicated 
situations, in which bending rigidity effects come into play, are also of much interest 

A possible model is given, for example, by self-avoiding rings (SAR) on a regular 
lattice, with a fugacity IC associated with each step, and a fugacity W associated 
with each elementary lattice plaquette enclosed by the ring. The fugaci W clearly 

representing the area of a plaquette) between the interior and exterior of the vesicle. 
This model of lattice statistics poses problems which are interesting in their own 

right. Recently a number of results have been either exactly established or conjectured 
on the basis of numerical evidence. For example, it is by now well established that, 
for W = 1, the average number of plaquettes ~~ enclosed within a ring scales like 
(KC(1) - K ) - 2 Y S * R  for Ii. - Kc(l)-, where vSAR = $ is the SAR exponent in 
d = 2 [SI and Kc(  W) represents the critical step fugacity [6, 71. 

nf "--...-**:""I A"" 1%- -I.;-"*" ... %.:..I. a..̂ *..̂ *̂  .L^--"ll.. .. .._I..- .L̂  :..,a..---- ^* 

[41. 

mimics the effect of an osmotic pressure difference A p  ( W  = eAAp ? kT, wth A 
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In addition, a number of results could be established on the form of Kc( W) for 
both W 5 1 and W 2 0 and on the relation between enclosed area and perimeter 
of the rings at criticality in the W < 1 region [7, 81. 

A relevant property, which has been conjectured [3] for the whole deflated regime 
(W < l), is that the average radius of gyration of the ring should behave as 
(IC,(W) - IC)-yBp, where usp is the exponent of lattice animals, or branched 
polymers in d = 2 [9]. So far, however, this property has escaped all attempts to 
establish it in full rigour, and its validity is supported only by plausible arguments and 
numerical evidence [4, 7, 81. 

More recently, on the basis of Monte Carlo evidence, a very rich phase diagram 
for a d = 2 off-lattice vesicle model has been conjectured when bending rigidity 
contrasts the deflating pressure [lo]. This phase diagram includes critical points and 
a first-order line and implies a highly non-trivial role for fluctuations in these systems. 

nf thse &: =,hi:. a&& 
tional information, possibly gained from exact calculations on simplified, hierarchical 
lattices, could definitely be of value. Indeed, models on fractal lattices have been 
proposed as a new context for the study of critical phenomena [ll], and exact results 
established for them can be important indicators of the actual situation in the regular 
case. 

sitce:iofi q-r!ifies the = 2 .,&.!-s gs 

2. Model and rrcursions 

In this work we take such an attitude and present an exact renormalization group 
(RG) approach to a model of deflated vesicles on a Sierpinski gasket. Both the model 
and the RG solution fully reflect the relative complexity of the physics we want to 
describe. We believe they should also be of methodological interest in their own 
right: indeed, with due computational effort, our approach allows exact answers to 
many difficult questions, often untractable in regular geometries, to be obtained. 

In the literature about critical phenomena on Sierpinski gaskets and similar fractal 
lattices, there already exist separate treatments of both SAR [12] and lattice animals 
(131. The critical behaviour of flaccid, or deflated vesicles, is already expected to 
fall in at least the universality classes of both these geometrical problems. Thus, the 
first issue to face is whether the hierarchical model we choose is flexible enough to 
reproduce in a realistic way the effects of a deflating pressure on a ring, by allowing 
the correct universal features to show up in each physical situation. 

It is immediately realized that the geometry of the Sierpinski gasket does not allow 

structure, as a part of its global configuration (figure l(a)). 'RI get such configurations 
one has to allow self-intersections or multiple points of the ring. On the other hand, 
studies of bond lattice animals on a Sierpinski gasket show that dangling ramifications 
attached to a triangle vertex and vertex-vertex connections (figure l(b)), with their 
interplay, are crucial in determining branched polymer behaviour [13]. Clearly, the 
vesicle drawn in figure l(a), with iu multiple points (which can be conceived as 
narrowing for the vesicle) seems to be a reasonable candidate to play a role similar tO 

that of configuration l(b) at a coarse grained level. For this to be true it is necessary, 
but not sufficient, that coarse graining, in an RG sense, implies a progressive deflation 
of the vesicle. 

a strictiy SAR io deveiop ju'iioops (ji siiips within iip.poiii~ng ;;iafig!;s =f the 
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Figure 1. (a) Schematic repmenlalion of a vesicle limited bj a ring with mulliple 
, points. Self-inlerseclions, lo be interpreted as namwings of the shaded interior of the 

vesicle, occur a1 each junction klween uppointing triangles. Such a ring a n  mimic the 
branched polymer mnfiguralion in (b). 

On the basis of these considerations we choose as contours of the vesicle in our 
model the silhouettes of closed 1-tolerant trails on the gasket. These are closed 
random walk, which are allowed to visit each lattice edge at most once. 

In the absence of a pressure difference (W = l),  models of this kind have already 
been studied, and are known to belong to the same universality class as SAR on the 
gasket [14]. Thus, after introduction of the fugacity W to control the enclosed area, 

In order to set up an iterative RG solution of the problem, it is helpful, although 
not strictly necessary, to restrict the possible topologies of our silhouettes. We thus 
allow only configurations in which the region enclosed by the silhouette is simply 
connected, taking into account that doubly visited sites can be assimilated to nar- 
rowings through which 'the interior' of the vesicle does not suffer interruptions. In 
other words we restrict the topology to that of the circle. This results in a sensible 
simplification of the RG recursions. 

Due to the fractal character of the gasket, it is important to choose a sensible 
convention for the evaluation of the enclosed area. The only way to get physically 
interesting results consists in weighing the whole area enclosed by the silhouette, i.e. 
in counting all internal elementaly plaquettes of the underlying, triangular lattice (see 
figure 2). 

wrh cilhnawttPQ Z ~ P  nhnrihb rsnrl id~ter tn mpres.let th.e phy!;.si= of 2 = 2 yesic!es, 
I--_. "-1.- "1..11 -.- r."""l".- _..".""._" .- 1- 

Figure 2. A vesicle of our silhouetle model on the Sierpinski gaskel at lhe lhird stage 
of construction (side equal 10 Z2 in units of the lattice spacing). All inlernal plaqueites 
of lhe underlying latlice are weighed in order Io gel physical resulu. Edges hlonging 
;o ;he i&ilgii:ai ;a;iiic ail: nil; a ;he ais 

Indeed, weighing only elementary up-pointing triangles, whose edges belong to 
the gasket, can be seen to lead to trivial one-dimensional self-avoiding walk expo- 
nents, if rings enclosing down triangles of any size are allowed. On the other hand, 
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persistence of sm behaviour results for the whole deflated regime, if the same rings 
are forbidden. 

The generating function for the problem we want to solve can be written as 

M L3i Stasio et a1 

where the sum is over all the previously specified ring silhouettes, r, on the nth gen- 
erduun aierpinsKi gasnet piue r: n = 0, i , 2 . .  .j. 2r and jri indicate the perimeter 
and number of enclosed plaquettes of ring r,  respectively. The normalization factor 
3-" is introduced to ensure a finite Z in the thermodynamic limit. 

The calculation of Z and similar generating functions can be performed recur- 
sively. One can show that, in view of the topology restrictions, hvelve restricted 
generating functions are needed in order to have a closed set of equations, allowing 
iterative calculation of Z. The recursions express the restricted functions for the 
(n + 1)th generation gasket in terms of those of the nth generation one. The terms 
occurring in the recursions are already so many and with so high multiplicities, that 
the calculation is most conveniently done by exact enumeration techniques on the 
mmputer. 

... .~! ...,..- ,.:a. 

A m 

n A n B I1 C n D 

n E n F n G n H 

n I n L Mn Nn 

Flgure 3. Diagrams representing 'ypical mnlributions 10 Ihe Weive gencraiing f i ini3hS.  
The hatched legions are supposed 10 belong to the interior of a vesicle. 

In figure 3 we sketch typical contributions to each of the 12 restricted generating 
functions, which are labelled in progressive alphabetic order. The exact enumeration 
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gives RG recursions for the generating functions which are reported below: 

A,,, = A: + A ,  B i  N ,  + 2.4, B, D,  N ,  + 2A,C, F, 

+ 2A,C,,L, + 2A,C, + A,Di N ,  + 2Ci  F, + C: H ,  

+ C: + 2C,G,L, 

B,,, = A i B ,  + 2A,B,C, + B i N i  +2B,C,G, 

+2B,D,N:+ DiN:  

C,,, = ZA,C, E,  + 2A,C, L ,  + BiC, N ,  + 2B,C, D, N, 

+ 2Ci L ,  + 2Ci M ,  + C, D: N, + 2C,E,,G, 

D,,, =AiD,+2AnC,D,+2C,D,G, 

E,,, = C i  N ,  + 6 E i  L ,  + GEiM,  + 3E,  L i  

F,,, = Ai C, N ,  + E,, F,” + 4E,  F, L ,  + 2 E, F, 

+ 2E,  H ,  L ,  + 2E,  L ,  + E, + 2F,L; 

+ 2F,L, + F, + 2L3, + 2L: M ,  + 2L: + 2L ,  

G,,, =A:E,,+A:F, +2AiL,+2AnC,F,  

+ 2A,C,  H ,  + 2.4,C, L ,  + 4 4 C ,  M ,  + 2 4  E,, G,  

+ 2A,G, L ,  + B:G, N ,  + ZB,D,G, N ,  + C: F, 

+ 2C: H ,  + CiIn + 2C, G,  L ,  + 4C,,G, M, 
+ D:G, N ,  + E,G; 

H,,, = 2A,C,G, N ,  + ZE, F,” + 2E,F, H ,  + 6E,F,L, 

+ sE,F, M, + 2E,,Fn + 6E,H, L ,  + 4E,H,M, 

+ 2E,H, + 2EnI,L, + 2E,  L ,  + 4E,M, 

+ 2F;L, + F,” + GF,L: +4F,,L,ilf, 

+ 4 F, L ,  + 3H, L;  + 2 H ,  L ,  + 2 L: 

+ 8 L ; M ,  + 3L; + GL,@ + 4L,M, 

I,,,] = 3C,Gi N ,  + 3 E, F: + 6E,F,H, + GE,F, L ,  

+ 12E,FnM, + 3E,H: + 12E,fI,L, +24E,H,M, 

+ GE,I, L ,  + 12E,I, M ,  + F,” + GF: L ,  

+ GF,,H, L,  + 9F, LE + 12F, L,  M ,  + 12H,L; 

+ 12H, L ,  M ,  + 31, L i  + 2L: + 12L2,Mn 

+ 24L,M: + 14Mi 

L,+, = A,C:N, + 2E:F,, + E i f l ,  + E: 
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+ 2E,F, L ,  f 4 E ,  L i  + 4E, L,M, + 2En L, + L; + L~ 11 

+ ~ E , F , L , + ~ E , H , L , + ~ E , L : , + ~ o E , L , M ,  

M,,, = C:G,N, + E, 2F,+2E:H,+E:I,  

+ 7E, M: + F, L: -I- 2L: -+ 3L: M ,  

N,+,  = N:. (2) 

For Z, the recursion takes the usual form of inhomogeneous RG equation of free 
energy like quantities: 

Z,,, = 32 ,  + A ; N ,  + 3F;L, + 3F: + 6F,L, + 6F, + 3HnL2, + 3L2, + 3 L  n.  

(3) 

Of course the analysis of these nonlinear recursions can be performed in general 
only with the use of the computer. 

3. Analysis of the recursions 

For given A' and W the thermodynamics of the model is determined hy the hxed 
point to which the RG recursions take the set of generating functions as n - ca. This 
clearly depends on the initial conditions. In our case we have 

c - p w  A ,  = li B, = KW 0 -  

Do = I P  E, = IC-3 w F, = o 
G, = 0 H, = 0 I ,  = 0 

L, = 0 M ,  = 0 N, = W 

(4) 

since for n = 0 the gasket reduces to an elementary up triangle. 
The structure of the RG recursions has features which immediately allow inter- 

esting conclusions to be drawn about the critical behaviour of the system. First of 
all, looking at the transformation of N, (N ,  = N:-,, No = W), we conclude that 
N, = W = 1 is an invariant subspace of the transformation. In this subspace a non- 
trivial fixed point describing SAR critical behaviour can be found (A' = 0.6108, 

H" = 0.0533, I' = 0.0123, L' = 0, M' = 0, N* = 1). Indeed, within 
the W = 1 invariant space, the relevant exponent associated to this futed point 
is y1 = 1.2521 , , ., which implies U = l / y ,  = 0 . 7 9 8 6 , .  ., the same usAw obtained 
for other models of SAW on our Sierpinski gasket [12]. This result is rather natural, 
because on the gasket, as on a Euclidean lattice, for a trail model like ours, Only 
excluded volume effects can influence the asymptotic behaviour, if W = 1. The pIe- 
viously described tixed point is reached, after an infinite number of iterations, when 
li = I C , ( l )  = 0.4316. . , , W = 1. By allowing W # 1 we obtain extra exponents 
at this SAR fixed p in t :  the relevant one, determining crossover, is yz = 2, as followS 
clearly from the recursion for N,. If, for example, we have N ,  = W 4 1, which is 

E" = 0.6108, C' = 0, D' = 0 ,  E' = 0, F* = 0.2310, G' = 0.1427, 
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the most interesting region for the model [SI, the recursions can only lead to fixed 
points at N = 0. The crossover exponent at W = 1 is 4 = y2/y, = 1.5973.. .. 

This crossover exponent implies that the average area enclosed by our ring, for 
W = 1, grows like (IC,(l) - IC)-2vs*w,  for Ii -, KC(1)-.  This follows from 
standard scaling arguments and from the fact the average area is 

If we take into account that one of the relevant scaling fields has dimension 
y1 = 1/13,,, and the other one, to leading order, is proportional to 1 - W, and 
has dimension yz = 2, the result clearly follows. In n e w  of the fact that the radius of 
gyration of the rings should diverge as ( I(,( 1)- I<)--ys*w,  we conclude that the rings 
are 'fat', i.e. enclose an average area equal to the square of their linear dimension, at 
W = 1. This last result also holds in the case of SAR on d = 2 regular lattice as first 
conjectured [3] and later derived on the basis of Coulomb gas (61 and other scaling 
arguments [7]. It is interesting to notice that the key ingredient for our conclusion 
here is the transformation law for W = No,  which implies y2 = d = 2. The same 
law and its consequences are established in 171 for the area fugacity of a vesicle model 
based on SAR on a regular lattice. 

The search for the critical fixed point, or points controlling the criticality of 
vesicles in the deflated regime, can be made by iterating the recursions with different 
initial conditions. For each W < 1, one finds a Kc( W) separating initial I1.s flowing 
to trivial high- and low-temperature fixed pints .  

This crossover exponent also determines the shape of the critical line li,( W) for 
W < 1. Indeed, standard scaling arguments lead to 

K J W )  - KJ1) w-1- - = (1  - W)l/+. (5) 

For each W the initial generating functions specified by W and lit( W) converge 
towards a critical rued point where the parameters A,,, B,, C,, D,, F,,, G,, If,, 
I,,, M ,  are going to infinity when n - 00, while the other parameters approach 
finite values. In order to study the asymptotic behaviour, it is profitable to introduce 
a new set of variables, which remain finite at the fixed point. Such new variables can 
be defined as follows: 

a = A G  b = B o  c = C f i  

d = D a  e = E  f = F E  g = G -  

h = H E Z  i = I E 3  l = L  m = M E  

n = N .  

(6) 

For each W < 1 and li = Ii,( W), the variables defined in (6) turn out to approach 
the same critical fixed point (a' = 0, b' = 0, C* = 0, d' = 0, e* = 0, f '  = 0.2009, 
g' = 0, h' = 0.0232, i' = 0.0022, 1' = 0.3276, m* = 0.0231, n* = 0). 
Remarkably, the non-zero components of this last fixed point exactly coincide with 
those already found, in a much smaller parameter space, for a branched polymer 
model on the gasket [13]. 
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In the new variables defined in equation (6) the Jacobian at this fixed p i n t  has 
a particularly simple structure: all its elements are identically zero, except for those 
of a diagonal block corresponding to the non-zero components. Within this block the 
Jacobian coincides with the one which is obtained for the branched polymer model 
recursions of [13]. This guarantees that, apart from the presence of 'infinitely irrele- 
vant' fields, the scaling dimensions at our fixed point are those of branched polymers. 
In particular we conclude that the Y exponent is equal to uBp = 0.7165.. ., in the 
whole deflated regime (W < 1) .  

This result is non-trivial, if we think that in the model of [13] the building blocks 
of the polymer are simply edges of the gasket. 

From this we learn that the asymptotic scaling properties of our deflated vesicles 
are exactly the same as those of lattice animals on the gasket, a property which is 
also expected to apply more generally to models on regular lattices [3, 7, 81. 

The behaviour of K,.( W) is reported in figure 4. The crossover exponent 4 is 
consistent with an infinite derivative at W = 1. For W -+ 0 the function describing 
Kc behaves as IC,(W)z W-'I3. 

0 
0 0.2 0.4 0.6 0.8 1 

Figurc 4. Sketch of Kc as a function of W .  

This asymptotic dependence is determined by the fact that, asymptotically, rings 
with 3lrl U ar are dominating the sum in equation (l), and can be derived on 
the basis of topological considerations and exact inequalities, by generalizing to our 
model, the methods discussed in [7] for the case of regular lattices. For example, in 
the case of a regular triangular lattice and SAR, one can show that IC,(W) = l / W ,  
for W + O+ [7]. 

4. Conclusions 

In this work we studied, by an exact RC analysis, the statistics of vesicles, with both 
step and plaquette fugacity, on a deterministic fractal lattice. 

In spite of the simplifications due to the fractal nature of the lattice and the 
topology restrictions, in order to solve a model which is adequate to mimic the 
physics of real vesicles, we had to work with RG recursions in a twelve-dimensional 
parameter space. 
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This high dimensionality required considerable effort in the numerical study Of 
the RG flow and its fixed points. The numerical search was also complicated by the 
fact of the critical fixed points had infinite components. 

Some remarks are in order concerning the specific choices made here. We h- 
posed to our closed trails the topology of the circle, once assumed to interpret doubly 
visited points as narrowings of a self-avoiding contour. 

This implies that, at coarse grained level, for example, in the deflated regime, 
our vesicles reduce to lattice animals without loops. In order to allow loops, we 
should release the constraint of simple connectedness, at the cost of a sensibly more 
complicated recursion structure (19 parameters). On the other hand, for lattice 
animals on a Sierpinski gasket it is by now exactly established that the presence or 
absence of loops does not influence the critical exponents [13]. 

Thus, in particular as far as the exponents of the deflated regime are concerned, 
we should not expect different results, when dealing with more general topologies for 
the trails. 

Another feature of our model is that it globally counts the area enclosed by the 
trails. Thus the fractal lattice only imposes restrictions on the possible configurations 
of the trails, which are othenuise seen as embedded in a regular, triangular lattice. 
This leads to the transformation law N,,,  = N; of equation (2). This transformation 
is very important because it only allows fixed points for W = 1 and W = 0, i.e. in 
the flacid and infinitely deflated regime, respectively. 

The results obtained in our analysis are physical and fully justify, in our opinion, 
the choice to work with a model on a fractal lattice. Indeed, this choice appears 
as the only way to get exact insight into crucial issues concerning more realistic 
models of vesicles on regular lattices. In this respect the most relevant result of the 
present analysis seems to us to be the exact identification of the universality class 
of deflated vesicles to be that of branched polymers. Our conclusion constitutes a 
strong indication of the general validity of this result, which is consistent with recent 
conjectures and heuristic arguments [3, 7, 81. 

We are convinced that the achievements of the present work should open the way 
to further advances in the field. 

Indeed, as mentioned in the introduction, interesting aspects of the physics of 
vesicles are expected to be reproduced by models also embodying, besides the area 
fugacity, bending rigidity effects. Monte Carlo evidence led recently to the conjec- 
ture of the possibility of a very rich behaviour of vesicles of f ied  perimeter in the 
presence of both deflation and rigidity [lo]. The methods of the present work can 
be generalized to embody bending rigidity in the modcl at the cost of a considerable, 
but not prohibitive, enlargement of the parameter space (22 parameters). Work is 
already in progress along these lines in order to make contact, in an exact context, 
with the physics revealed by Monte Carlo simulations of models in the continuum. 
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